
Image Processing on Raspberry Pi for Mobile

Robotics

K. Horak
Brno University of Technology/Department of Control and Instrumentation, Brno, Czech Republic

Email: horak@feec.vutbr.cz

L. Zalud
Brno University of Technology/Department of Control and Instrumentation, Brno, Czech Republic

Email: zalud@feec.vutbr.cz

Abstract—We have designed a small robot called Cube for

simple robotics tasks and students works. The Cube carries

only small and lightweight computational platform

Raspberry Pi equipped with a camera. This paper serves as

an introduction to using image processing methods on a

Raspberry Pi platform via Simulink in Matlab. We have

designed a cheap framework for fast image processing in

real-time including feature extraction and image

transformation methods. In the paper a several selected

methods frequently used not only in robotics are

implemented and tested on the Raspberry Pi 2 equipped

with a native camera board. Algorithms for edge, corner

and line detection have been implemented by using

Simulink with the Computer Vision System Toolbox and

other in-build tools.

Index Terms—image processing, Raspberry Pi platform,

Matlab Simulink, feature extraction.

I. INTRODUCTION

Machine vision is very often a substantial part of

cybernetics systems for example in an industrial

inspection, traffic monitoring, security surveillance

systems, and naturally in mobile robotics [1,2].

A lot of various sensors (e.g. ultrasonic or lasers

rangefinders, accelerometers, LED-based sensors, GPS,

etc.) are used for data gathering and mobile robot itself

navigation. Unfortunately, a machine vision

instrumentation is regularly one of the most expensive

part of mobile robots systems, which is inconvenient

especially for students and research purposes. For that

reason, we have decided to design and implement a

concept of a cheap and universal mobile robotic platform.

Manuscript received October 16, 2015; revised November 18, 2015;

accepted November 18, 2015. Authors cordially thanks to the grant
“The research of new control methods, measurement procedures and

intelligent instruments in automation” No. FEKT-S-14-2429 from the
Internal Grant Agency of the Brno University of Technology.

K. Horak is with the Department of Control and Instrumentation,

Brno University of Technology, Brno, 61600, Czech Republic (phone:
00420-5-4114-6417; e-mail: horak@feec.vutbr.cz).

L. Zalud is with the Department of Control and Instrumentation,
Brno University of Technology, Brno, 61600, Czech Republic (phone:

00420-5-4114-6416; e-mail: zalud@feec.vutbr.cz).

We have named it a “Cube” due to its simple shape and

its straightforward purpose for beginners’ tasks.

A. Cube

Horizontal dimensions of the Cube are approx. 150

millimetres in both directions. A chassis and wheels of

our new one-axle robot has been designed and printed by

a low-cost 3D printer. The robot is equipped with two

stepper motors driven and powered by a specially

designed printed-circuit-board connected to the

Raspberry Pi 2 platform [3]. A functional prototype of the

Cube robot can be seen in the Fig. 1 on the left.

B. Raspberry Pi 2 Platform

The Raspberry Pi platform originally intended for

educational purposes has become famous immediately

after its introduction in 2012. The next-generation

Raspberry Pi 2 (RPi2 hereinafter) was released in 2015

when almost six million Raspberry Pi of the first

generation have been already sold. The second generation

is based on the Broadcom BCM2836 system on a chip

with a quad-core ARM Cortex-A7 processor and a

VideoCore IV dual-core GPU with 1 GB of RAM. This

small, universal and still good-performance platform is

self-evidently suitable for such mobile applications in

machine vision and robotics as mentioned above in the

introduction chapter.

For machine vision purposes a native Raspberry Pi

Camera board (RPiCam hereinafter) is available on the

shelf. The RPiCam employs a 5-megapixels CMOS

sensor Omnivision 5647 with a resolution of 2592 by

1944 pixels and transfer rates of 1080p/30 or 720p/60 fps.

Figure 1. The small mobile robot Cube designed and printed on 3D
printer at Brno University of Technology equipped with the Raspberry
Pi 2 platform (on the left) and a couple of available native camera

boards for visible and combined visible and IR light (on the right).

Figure 2. The Raspberry Pi Camera board connected to a camera
connector on the Raspberry Pi 2 platform by ribbon flex-cable.

The image sensor is assembled in a fixed-focus module

with either IR blocking filter or without it. We have used

a NoIR version of the RPiCam with removed infra-red

filter along our experiments. A camera is then sensitive to

short-wavelength IR radiation around 880 nm besides

general visible spectrum.

The RPiCam board itself is tiny at around 25x20x9

millimetres and is directly connected to a camera

connector on the RPi2 platform by flat cable for higher

operability. As is illustratively depicted in the Fig. 2, the

RPi2 platform contains further interfaces for HDMI,

USB, RJ45, GPIO, audio jack and Raspberry display

devices.

We have only employed the power supply connector

and Ethernet cable for communication between the RPi2

and PC during our development. All algorithms we have

designed in the Simulink were deployed into the ARM

processor on the RPi2 via the Ethernet cable.

II. IMAGE PROCESSING METHODS

There is a plenty of various image enhancement

methods, conversions, geometric and morphologic

transformations, feature extraction and objects

recognition techniques in a computer vision and image

processing theory [4-9]. We have decided to implement

and test several geometric-based feature detection

methods frequently used in robotics for environment

understanding and objects recognition [5,10].

The three representative algorithms for edge, corner

and line detection have been selected and taken into

account in this paper for implementing in the Simulink

and performance measuring on the RPi2 platform.

A. Edge Detection by Sobel operator

Several different approaches how to detect edges in

images exist [11]. The most common way to obtain an

edge-image uses a convolution. An original input image

is convolved with some gradient operator, which is

selected from the set of well-known operators in advance.

These gradient operators are of two categories (a first-

order and second-order) depending on whether they

































































































111

181

111

101

202

101

010

141

010

101

101

101

8

4Pr

LaplacianSobel

Laplacianewitt

HH

HH

 (1)

Figure 3. The input RGB image from RPiCam with resolution of
320x240 pixels and the relevant result of the Sobel operator.

approximate either a first derivative (Prewitt, Sobel and

others) or a second derivative (zero crossing of the

Laplacian) of the input image. The Prewitt and Sobel

operator for vertical lines and the Laplacian operator for

4-neighbourhood (orthogonal) and 8-neighbourhood

(orthogonal + diagonal) are given by the equation (1).

By comparing coefficients in matrices HPrewitt and

HSobel can be quickly seen that the Sobel edge detector is

very similar to the Prewitt with only difference in

emphasizing centre pixels (i.e. nearest pixels in 4-

neighbourhood of the central one). This results in

insignificant differences between output edge-images of

these two operators in practice. Fig. 3 shows an original

image of a scene with an ARTag (marker with unique

code used e.g. for indoor robots navigation) and the

resulting edge-image using the Sobel operator.

Edge images, similar to the depicted one, are either

important inputs to scene understanding blocks [12] or

even necessary inputs to several image transforms as for

example the Hough transform described below.

B. Corner Detection by Harris operator

A corner detection is the next qualitative level in an

image understanding. All known corner detectors

generally differ from edge detectors in stronger response

in places where corner is present in comparison with

places where only edge appears [11].

The most simple corner detector is the Moravec

operator only summing eight differences between a

central pixel and pixels in the 8-neighbourhood. More

sophisticated corner detectors named after their authors

are Harris&Stephens algorithm, Shi&Tomasi algorithm

and finally Rosten&Drummond algorithm. We have used

the Harris&Stephens corner detector in our Simulink

tests. It is based on an autocorrelation function of a small

patch of the input image. A first step in the Harris

algorithm is to compute a Harris matrix, the matrix

containing all combinations of gradients in horizontal and

vertical direction. When the horizontal and vertical

gradients are denoted as Ix and Iy, respectively, the Harris

matrix A will be given by the equation (2).

 













u v yyx

yxx

III

III
vuwA

2

2

),((2)

Corners are places in an image where gradients are

significant in both the horizontal and the vertical

direction simultaneously. It follows eigenvalues 1 and 2

of the Harris matrix can distinguish flat patches, edges

and corners from each other. In order to do this, easy to

Figure 4. A metric map as a grayscale image computed by the
Harris&Stephens algorithm (on the left) and strongest detected corners

imprinted into the input image (on the right).

compute function H indicating corner by its high value

were suggested by Harris&Stephnes. The H function is

given by an equation (3), where the det(A) stands for a

matrix determinant and the trace(A) stands for a sum of

values along its main diagonal.

 )()det(22

2121 AtraceAH   (3)

Note that a second mentioned corner detector

Shi&Thomasi directly computes a minimal value of 1

and 2.instead of the more complex function H in

Harris&Stephens algorithm. Fig. 4 shows a metric map of

the Harris&Stephens algorithm and a set of detected

maximums in this metric map depicted into the original

image by purple crosses.

Corners play, similarly as edges, very important role in

image understanding step as input points for computation

region descriptors e.g. SURF, MSER, BRISK, etc. [13].

Usage of such stable and reliable descriptors facilitates

object tracking and recognition in an unknown scene.

C. Line Detection by Hough transform

The Hough transform is conversion of coordinates of

all non-zero pixels in an input binary image to an abstract

space of parameters. These parameters are exactly given

by an analytical equation of a sought-after shape (e.g.

line, circle, ellipse, etc.). In that resultant parameters

space a desired number of peaks (i.e. global maximums)

are detected and finally respective space coordinates are

then transformed back into the image plane in form of

detected entity (line, circle, etc.) [6,7].

The most common is the Hough transform for line and

circles detection. The first one play a significant role in

mobile robotics navigation and scene understanding. For

example a thresholded (binary) version of the edge image

in the Fig. 3 can serves as an input to Hough transform

for lines detection.

Figure 5. The coordinate space (X,Y) containing only one illustrative

line with the three highlighted dots.

Figure 6. The accumulator of the Hough transform in form of a
grayscale image containing several peaks representing respective
number of lines in the input image.

Figure 7. Eight lines related to the eight strongest peaks in the
accumulator in the Fig. 6 imprinted into the input image.

An arbitrary line of perpendicular distance  (rho)

from the origin and angle  (theta) of inclination of a

normal line from the x-axis can be represented in

parametric form given by the equation (4).

)sin()cos(  yx (4)

In this case, a two-dimensional space of image

coordinates (X,Y) is mapped into a new space of line-

equation parameters (,) often also called a Hough

accumulator (see Fig. 6). As can be illustratively seen

from the Fig. 5, the x and y coordinates of each nonzero

pixel in the input binary image (three black highlighted

dots) are transformed to the one couple of parameters

(,). A relevant point of the computed coordinates  and

 is increased by 1 in the accumulator. Such voting

system causes that all pixels lying in one straight line

create a peak in the accumulator with maximal value

equal to a number of pixels in the line. Non-ideal (i.e. not

exactly straight) shape of line results in a blurred peak,

but still distinguished from generally lower values in a

neighbourhood of this peak. Coordinates  and  of each

local maximum can be simply displayed in the input

image as lines (see Fig. 7). User itself via an algorithm

selects a number of strongest peaks to be displayed.

The lines detected in the input image are, again, very

convenient features especially for robot navigation in

both indoor and outdoor environments [1].

III. IMPLEMENTATION IN MATLAB SIMULINK

Matlab is well-known and, in certain sense, also

powerful tool for scientific computations. It is equipped

with the Image Processing Toolbox and Image

Acquisition Toolbox for computer vision tasks. A plenty

of code in form of various m-files have been written and

is often shared at MathWorks exchange web pages. We

decided to implement above mentioned image processing

methods to the RPi2 by means of the Simulink®, a

graphical tool for technical simulations and devices

programming. Tools in Simulink enable design of such

applications by using the Support Package for Raspberry

Figure 8. Simulink models for edge, corner and line detection.

Pi Hardware™ and the Computer Vision Toolbox. Each

one of the three above mentioned methods has been

designed in its own scheme. All the three Simulink

models of edge, corner and line detectors are depicted in

the Fig. 8. Red (dark in grayscale) blocks belong to the

Support Package for Raspberry Pi Hardware, blue (pale

in grayscale) blocks belong to the Computer Vision

System Toolbox and white (transparent in grayscale)

blocks are general Simulink math and other operations.

At a testing stage, each model have been deployed

directly to the RPi2 platform by an Ethernet cable

between the RPi2 and computer with Simulink models. A

performance of the RPi2 platform on machine vision

tasks were measured by the FPS indicator (frames per

second) independently for all models. Moreover, each

model has been tested at four generally used resolutions –

160x120, 320x240, 640x480 and 800x600 pixels.

At the most top position in the Fig. 8, the Simulink

model of the edge detection is depicted. This model uses

a block of the Sobel operator with the two output signals

Gv and Gh related to the vertical and horizontal edges,

respectively. The signals Gv and Gh are added up and

straightforwardly distributed to an output display.

Further, in the middle of the Fig. 8, the Simulink model

of the corner detection is depicted. The corner detection

block implements corners detection algorithm in the input

grayscale image. The block has three options of

algorithms used: the Harris&Stephens, the Shi&Tomasi

(both described above) and the Rosten&Drummond. Note

that the last one mentioned algorithm uses a local

intensity comparison, an effective technique resulting in

that algorithm is approximately twice as faster as the each

one from the previous couple. Furthermore, a maximum

number of detected corners were saturated by a number

of 100 and the parameter  (kappa) in the equation (3)

were permanently equal to 0.04 during our experiments.

Finally, at the bottom position in the Fig. 8, the

Simulink model for the line detection by means of the

Hough transform is depicted. As can be seen from the

Simulink model, the Hough transform block works with

the thresholded (i.e. binary) image obtained by the Sobel

operator applied directly on the input RGB image. This

block outputs besides the rho and theta vectors also a

Hough space, it means already mentioned accumulator.

The next block „Local Maxima” finds no more than given

number of strongest peaks in the accumulator and outputs

rho and theta coordinates in it. Note that the range of

theta is –π/2≤θ<+π/2 with a step-size /180 radians. It

means lines in the input image are detected in precision

of 1 degree and left and right side of the Hough

accumulator in the Fig. 6 relates to line inclination of -90

degree and +90 degree (vertical lines). The last important

block, however needed only for visualization purposes, is

„Hough lines” intended for computation of ending points

of the detected lines. These ending points are

subsequently used for imprinting the lines into the input

RGB image. Last, but not least, several submatrix and

selector blocks have been employed for the rho and theta

vectors operations.

IV. EXPERIMENTAL RESULTS

As it was already mentioned in the text above, all the

three Simulink models were designed, implemented and

finally verified and tested on the RPi2 platform at four

different resolutions. The performance of the feature

extraction methods has been measured and compared in

this paper by means of the frames per second indicator.

TABLE I. COMPARISON OF FPS VALUES FOR THE DESIGNED

MODELS AND DIFFERENT IMAGE RESOLUTIONS

FPS 160x120 320x240 640x480 800x600

Edge detection
(Sobel operator)

72.4 18.2 4.5 2.9

Corner detection

(Harris&Stephens)
22.6 4.7 1.2 0.7

Line detection
(Hough transform)

19.6 5.7 1.6 1.0

Both the internal (in Simulink) and external (deploying

to RPi2) modes were tested, nevertheless only the second

one is important for our purposes of the cheap robotics

platform. Values of FPS are shown in the Table I.

Note that all models described in the previous chapter

were deployed directly onto the RPi2 platform during the

test stage, but resultant images were displayed back on a

monitor of a workstation with the Simulink due to

absence of a Raspberry Pi proprietary display. A transfer

of image data between the RPi2 platform and the

workstation may influences the FPS values in the table. It

follows, the values in the Table I. relate to the worst cases

and the FPS values should be higher if any visualization

block had not been implemented or had been

implemented directly on the RPi2 platform.

To sum up, we may conclude that the measured FPS

values are relatively good and the RPi2 platform is

certainly useable for majority of usual robotics tasks,

especially when optimizations over the Simulink schemes

and target code (C/C++) have been carried out.

ACKNOWLEDGMENT

This work was supported by the grant “Research of

New Control Methods, Measurement Procedures and

Intelligent Instruments in Automation” No. FEKT-S-14-

2429 from the Internal Grant Agency at BUT.

REFERENCES

[1] Zalud, L., Kocmanova, P., Burian, F., Jilek, T. Color and

Thermal Image Fusion for Augmented Color and Thermal

Image Fusion for Augmented Reality in Rescue Robotics.

Lecture Notes in Electrical Engineering. Springer, 2014.

pp. 47-56. ISBN: 978-981-4585-42- 2.

[2] Klecka, J., Horak, K. Fusion of 3D Model and

Uncalibrated Stereo Reconstruction. Advances in

Intelligent Systems and Computing. Springer, 2015. pp.

343-351. ISBN 978-3-319-19823- 1.

[3] Richardson, M., Wallace, S. Getting Started with

Raspberry Pi. Maker Media, Inc., 2012. 176 pages. ISBN

978-1-4493-4421-4.

[4] Vernon, D. Machine Vision: Automated Visual Inspection

and Robot Vision. Hemel Hempstead: Prentice Hall

International Ltd., 1991. 260 p. ISBN 0-13-543398-3.

[5] Russ, J.C. The Image Processing Handbook. CRC Press

Inc., Boca Raton Florida, 1994. ISBN 0-8493-2516-1.

[6] Kropatsch, W. G., Bischof H. Digital Image Analysis.

Springer-Verlag New York, Inc. 2001, 505 pages. ISBN 0-

387-95066-4.

[7] Gonzales, R. C., Woods R. E. Digital Image Processing -

Third Edition. Pearson Education, Inc. 2008, 954 pages.

ISBN 978-0-13-168728-8.

[8] Young, I.T., Gerbrands, J.J., Vliet, L.J. Fundamentals of

Image Processing. TU Delft, 1998. 113 p. ISBN 90-75691-

01-7.

[9] Nikhil, R. P., Sankar, K. P., A review on image

segmentation techniques, Pattern Recognition, Volume 26,

Issue 9, September 1993, Pages 1277-1294, ISSN 0031-

3203.

[10] Horak, K. Detection of Symmetric Features in Images.

International Conference on Telecommunications and

Signal Processing. 2013. pp. 895-899. ISBN 978-1-4799-

0402- 0.

[11] Sonka, M., Hlavac, V., Boyle, R. Image Processing,

Analysis and Machine Vision. Toronto: Thomson, 2008.

829 p. ISBN 978-0-495-08252-1.

[12] Papageorgiou, C.P., Oren, M., Poggio, T. A General

Framework for Object Detection, Proceedings of the 6th

International Conference on Computer Vision, pp. 555-

562, 1998, IEEE Computer Society, Washington. ISBN

81-7319-221-9.

[13] Lowe, D. G., Distinctive Image Features from Scale-

Invariant Keypoints. International Journal of Computer

Vision, Springer Netherlands, 2004, pp. 91-110, ISSN

0920-5691.

Karel Horak was born in Pardubice,

Czech Republic, on August 1, 1979. He

received the M.Sc. and Ph.D. degrees in

cybernetics, control and measurements in

2004 and 2008, respectively, from Brno

University of Technology.

He is currently working as an assistant

professor at the Department of Control

and Instrumentation, BUT, where he

heads the Computer Vision Group. He has authored and co-

authored almost fifty papers and journal articles in areas of

computer vision and image processing.

Ludek Zalud was born in Brno, Czech

Republic, on August 18, 1975. He

received the M.Sc. and Ph.D. degrees in

cybernetics, control and measurements in

1998 and 2002, respectively, from BUT.

He is currently working as an

associate professor at the Department of

Control and Instrumentation, BUT,

where he heads the Robotics Group. He

has authored and co-authored more than one hundred papers

and journal articles in area of robotics and bioengineering.

